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Note 

On the Calculation of Wu’s Integral 

In a previously published study of band systems of diatomic molecules 11 1 
integrals of the type 

. -cI 

! Y’,,r,r,p(r) ‘Z’,,,,,.,,(r) dr (1) 
‘0 

were encountered which involved the associated Laguerre polynomials L:(z) with 
argument z = e-Or. These were expressed in terms of integrals of the form’ 

J,,,(t) = (.I- em (“2)(ZtbZY)zP dz 
(2) 

” 0 

for the purpose of numerical evaluation. 
Since the integral (2) cannot, in general, be expressed in terms of known functions 

except in the special cases where y = 0, 1, 2, 3 and (in the last instance, integer “JJ”) 
recourse to numerical integration is necessary for its evaluation in general. (‘J = 0, 1 
are trivial; y = 2 leads to parabolic cylinder functions 12, Chap. 19 1; while the case 
y = 3 involves Airy functions, but with considerable complications (cf. Chap. 10, lot. 
cit.) 

The present paper derives some analytical properties of the integral (2) in the form 
of recurrence relations and an asymptotic approximation. In addition, a method is 
presented whereby a priori and a posteriori error estimates can be obtained, when the 
integral is approximated by quadrature. 

1. RECURRENCE RELATIONS 

For convenience, a simpler form of the integral (2) will be adopted, namely, 

z,,,(x) =1X e-(rt-rly)tP df 
0 

(3) 

’ The actual integral involved has a finite upper limit but, in most problems, it is sufficiently large to 
allow (2) to constitute an adequate approximation. 
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(Re(p) > -1, Re(x) > 0, Re(y) > 0.) An obvious integration by parts gives 

Yxl,+y,yW=(P+ w&7,y(x)-~p+,,~x)~ 

Pf-1, Yx’y- I,yW = 1 - ~o,,W. 

(4a) 

(4b) 

If “y” is assumed to be a positive integer, then, ordinarily, knowledge of Z,.Jx) for 
“y” contiguous values of p would be needed to give all remaining values of Z,,Jx). 
However, because of the relation (4b), this number can be reduced to y - 1 if p is 
also a positive integer, although, in practice, it is preferable to compute the ZP.y(x) by 
applying (4a) in the backward direction starting with the full number of initial values, 
and then to use (4b) as a check relation. The reason for this is twofold: First, the 
relation (4a), when applied in the direction of decreasing “p,” involves only addition 
and multiplication of positive quantities, and is therefore numerically stable. Second, 
as will be shown later (Art. 3), the evaluation of the integral (2) by quadrature 
requires fewer tabular values of the integrand to obtain a prescribed accuracy when 
“p” is large. 

2. ASYMPTOTIC APPROXIMATION 

An asymptotic approximation to Z,.,(x) can be found by writing the integral in the 
form 

I 

.cc 
e -B(f) dt 

0 

where 

4(t)= It+xtY-plnr] (6) 

and applying the “saddle point” method. This method is based on the assumption 
that the primary contribution to the integral comes from values of “t” in the vicinity 
of one or more stationary points of O(t); i.e., at a point or points where 

$4’(t) = 0. (7) 

In the present example, 

g’(t) = 1 + YXyXtYP’ -p/t (8) 

so that the saddle point (or points) occurs when 

yxtY+t-p=o. (9) 

It is evident that the above equation has one and only one positive root, to, and hence 
only one stationary point need be considered. 
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Developing 4(t) in a Taylor series about t,, we get 

(b(t) = a, + a,(t - t(J2 + a& - Io)3 + ... + 

where 

a, = to + xti -p In(&), 

2!a, = y(y - 1) xtj;-2 +p#;; 
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(10) 

(11) 

and in general 

,ya,=y(y- 1) .., (y-k+ l)xtypk + (-)$- l)!&‘f,“. 

(Note that, if y is a positive integer, the last relation reduces to 

k!a, = (-)k(k - I)! p/t,” 

for k > y.) 
For convenience set 

u* = IGw> -%1/a,* u > 0, 7 = 1 t - to 1. 

Then, from (11). 

(12) 

(13) 

u2=r2(1 +b,t+bz7*+ ... +I (14) 

where 

bk = *a, + *la2 (15) 
and where the “+” sign holds for t > t, and the “-” for t < t,,. The integral (5) now 
becomes 

(16) 

Further, the series (14) can be inverted by writing it in the form 

u=tll+b,s+b252+...+I”2 

and applying LaGrange’s theorem (2, Art. 3.6.6). This gives 

r=ull +c,u+c2u2+ *.. +] 

where 

(17) 

(k + 1) ck = (coeffkient of rk in the expansion of 

11 +b,t+b,r2+ ... +]-~“‘2’(k+‘)}. (18) 
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c,=-b;++b,b,-+bj, 

(19) 

231 
c,=128b:-~bjb,+~b,b,+~b:-tb,. 

In changing the integration variable from t to u, distinction must be made between 
the regions on either side of the saddle point, t,. From (17) 

dt=du[l + 2C,U + 3c,u* + ... +I, (20) 

but, because of the ambiguous sign in (IS), we find that when the integrals 
originating from the two sides of t, are combined, the terms in (20) with odd coef- 
ficients cancel, while the even ones combine, and hence 

-or, 

!  !  

OL 

e m’(‘)dt~2e-Uo e~a~uz(l +3c,u*+Sc,u’+~~~+]du. (21) 
0 0 

(It should be remarked that the above result is only asymptotically true, subject to 
the condition that a, be sufficiently large to allow those contributions which originate 
outside the radius of convergence of the inverted series (17) to be neglected. This 
assumption is consistent with asymptotic analyses in general.) 

The integrals involved in (21) are well known. Specifically 12, Art. 7.4.4 I: 

-w2U*h du ,,/- G 1. 3 
... 

(2k- 1) = k>O 
a2 2kak 2 

and hence2 

s 

m e -(It xtY)p dt - GL 

0 
L]a,epuo 1 +;?a,+~+ ... + . 

I 
3c2 19, 

I 

(22) 

(23) 

(24) 

Since (24) is effectively an expansion in inverse powers of “a,,” it will be more 
accurate when this parameter, which, according to (1 l), is of the order of magnitude 
of “P, ” is large. As an illustration of the above formula, the following approximations 

’ The leading term of this expression is comparable to that obtained in 11, Eq. (16)j. 
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to the integral for p = 50, x = 8, y = 3 are obtained using 1, 2, and three terms of the 
series (24): 

t, = 1.266308; a0 = 5.70559; a, = 45.98 19; a, = -.207874 

a4 = 4.86130; c2 = -.05285; cq = -.01168; 

which give, with 

one term:12 8.69712 x lo--‘; 

two terms: 2 z 8.68212 x 10-4; 

three terms: IF? 8.68194 X IO-‘; 

the last value being in close agreement with that obtained in the next section by 
quadrature. 

3. EVALUATION BY QUADRATURE 

With the aid of the Euler-McLauren formula 12, Art. 25.4.71, it is possible to 
evaluate the integral (3) by the trapezoidal rule, with an a priori error estimate, which 
may be converted to a sharper, a posteriori one by performing the integration with 
successive intervals of “h” and “2h.” We introduce the notation I,(h) to denote, for a 
given integrandf(x) and integration limits a and b, the sum 

hi&f(a) +f(a + h) +f(a + 2h) + ... + &f(b)]. (25) 

The Euler-McLauren formula can be written 

[‘y(t) dr =1,(h) - T1 hzk $ (f(2k-“(b) -f”“- “(a)/ + R,,(h) (26) 
a k’li0 

where the B,, are the Bernoulli numbers, the first few of which are 

B, = l/6, 

B, = -l/30, 

B, = l/42, 

with additional values given in (2, Table 23.21. 
An estimate of the remainder R,,,(h) is given by the following 

(27) 

R2nW) 

B,, h2” N- 
(24 C2” (28) 
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(lot. cit., Art. 23.1.30), where C,, is bounded if f”“‘(t) exists and is finite for 
a < t ,< b. It follows that, although 

R*,(h) + a, h fixed, n -+ co (29) 

it still holds that 

R,,(h) -+ 0, n fixed, h --t 0. (30) 

In this sense, (26) is an asymptotic series, and can thus be written 

I -bf(t) dt - I,(h) - zl -$j$’ If”kp “(b) -.f’2kp “(a)]. 
0 

In the case of the present integral, it can be seen from the Taylor series expansion of 
f(t) that, if “P” denotes the integral part of “p,” the first non-zero term in the Euler- 
McLauren series will be O(hPi2) if “P” is even, and O(hPt ‘) if “P is odd. That is, 

! 
-’ f(t) dt - I,(h) + uhP+ *, P even 
0 

(32) 
- Z,(h) + uhP+ ‘, P odd 

where “a” does not depend on “h,” so that a larger interval of integration can be used 
to obtain a desired accuracy as “p” increases, and because of the property (30), such 
a value of “h” can always be found. The difliculty, of course, is that in some cases 
the magnitude of “a” may be fairly large, and a precise estimate difficult to obtain 
analytically. However, a reasonably good estimate of this quantity can be found 
numerically by performing the trapezoidal integration with successive intervals of “h” 
and “2h.” This gives, e.g., for “P” even, the following estimate for the absolute error: 

E,(h) r ah’+’ Z,(h) - Z,Ph) 
2Pt2 I -1 * (33) 

In some problems, such as the present one, where the integral itself is fairly small, the 
absolute error is less meaningful than the relative error, which is given by 

E 
r 

(h) = 1 - V,P)lz,(h)) 
2Pi2 -1 (34) 

since the latter is an indication of the number of correct significant figures, rather 
than the number of correct decimal places. 

As an example, the integral (3) with x = 8, y = 3 and p = 10 is approximated by 

3.11955 105 x lop4 
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with h = 0.1 and by 

3.11945302 x 10m4 

with h = 0.2. Hence, from (34) the relative error for h = 0.1 is estimated as 

7.7 x lo-‘, 

indicating that the value of Z,(O.l) is correct to within approximately 2 units in the 
ninth significant figure. 

The results for p = 50 are even more surprising: With h = 0.1 and 0.2, the 
respective approximations are 

Z,(O.l) = 8.6819219 x 10P4, 

Z,(O.2) = 8.64354263 x lo- 4, 

so that the relative error for Z,(O. 1) in this case is of the order of 1 x 10 “. 
The facility with which this integral can be evaluated accurately by quadrature 

when p is large provides the following very simple scheme for its calculation: 
“Evaluate the integral by quadrature for three fairly large and contiguous values of 

p, and then use the recurrence formula (4a) in the backward direction to obtain the 
values of the integral for all lesser values of p > 0, with a check on the accuracy 
provided by the relation (4b), in the cases where “p” is an integer.” 

The method is illustrated in the following tables for x = 8, y = 3. The values of 
Z,,,j(8), Z,,,,(B) and Z,0,3(8) are first determined by quadrature, using an integration 
interval of 0.1: 

Z,,,,(8)- 1.717303 x IO-“, 

Z,1,3(8)~ 2.276686 x 10mJ, 

Z,,,,(8) z 3.119549 x lo-“. 

The error estimate (34) indicates that all of the figures in the above are correct. With 
the above as starting values, the recurrance relation (4a) is then applied in the 
backward direction to obtain Z,,,(8) for p = 9, 8,..., 0. The check relation gives 

Z&8) + 241,,,(8) = 0.99999976. 

The results are given in Tables I and II. An additional set of values for 
p = 13, 14, 15, obtained by applying (4a) in the forward direction, is also included. 
For comparison, in both tables approximate values are determined from the 
asymptotic series (24), with 1, 2 and 3 terms, for p = 15(-1)8. As would be 
anticipated, the asymptotic approximation improves with increasing p. 
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TABLE I 

I,,&) x IO’ for x = 8, ‘i = 3, p = U-1)0 

Asymptotic series (Eq. (24)) 
By quadrature 

P and Eq. (4a) 1 term 2 terms 3 terms 

12 
II 
10 
9 
8 
1 
6 
5 
4 
3 
2 

0 

1.717303 1.73097 1.71786 1.71725 
2.276686 2.29662 2.27755 2.27660 
3.119551 3.14989 3.12095 3.11935 
4.433482 4.48198 4.43592 4.433 1 1 
6.563772 6.64569 6.5682 I 6.56297 

10.179118 
16.654670 
29.030866 
54.66594 

113.59451 
270.1118 
791.0472 

3517.315 

Note. Check relation: I, + 241, = 0.99999976. 

TABLE II 

I,,).(x) x 10 for x = 8, 7 = 3, p = 13. 14. 15 

Asymptotic series (Eq. (24)) 
By recurrence ~~~ 

P relation (4a) I term 2 terms 3 terms 

13 1.33493 1 1.34466 1.33530 1.33489 
14 1.066789 1.07396 I .06705 I .06677 
15 0.874584 0.88004 0.87477 0.87456 
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